Mechanical properties			
Modulus of elasticity	3,200	[MPa]	ISO 527
Tensile strength	47	[MPa]	ISO 527
Tensile strain at tensile strength	4	[%]	ISO 527
Tensile stress at break	34	[MPa]	ISO 527
Tensile strain at break	7	[%]	ISO 527
Notched impact strength (Charpy), RT	4.2	[kJ/m²]	ISO 179-1/1 eA
Impact Strength (Charpy), RT	21	[kJ/m²]	ISO 179-1/1 eU
The values listed have been established on standardized test specimens (DIN EN IS	SO 3167, type A) at stan	dard temperature and hum	nidity conditions.
Physical properties			
Melt flow rate (190 °C/2.16 kg)	2.5 - 5.0	[a/10 min]	ISO 1133

> 155

1.19

[°C]

[g/cm³]

ISO 3146-C

ISO 1183

Machanical proportion

Melting temperature

Density